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Abstract

The surface electronic charge distributions of a one-

dimensional semiconductor are compared for the ground state and

the laser-excited surface states. A charged adspecies inter-

action potential with these excited surface states is examined

for the case of silicon. The use of a laser to enhance desorp-

tion or adsorption by this process is discussed.,
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1. Introduction

Laser-induced photochemistry with adspecies is a growing

area of interest, with much attention being given to cesorption

processes. For example, Djidjoev and co-workers1 have reported

that the desorption of hydroxyl groups from the surface of silica

can be greatly enhanced in the presence of an infrared laser.

Chuang 2 has also presented experimental evidence that the reaction

of an adspecies with a silicon surface can be stimulated by laser

radiation.

For the theoretical descriptions cf these processes, a

statistical analysis has been given by Lin et al.,3 while Jedrzejck

and his associates4 have used a simple one-dimensional model. Both

of these theoretical studies, and the experimental works, have

relied on the use of the laser to excite the vibrational modes of

the system.

On the other hand, photo-induced surface reactions can occur

through electronic excitation. Such effects have been demonstrated

by synchrotron radiation studies5 on metal surfaces. Desorption of

an adspecies is produced by a shift in electronic charge in the

surface region and the resultant Coulombic repulsion.6

For a semiconductor with a surface, the electronic energies

consijt of various surface states, in addition to the bulk valence

and conduction bands.7 These surface states, with charge localized

in the surface region, can be populated by using a laser to excite

electrons from the bulk electronic bands.8 As in the case of

synchrotron radiation, such surface charge could induce a strong
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Coulombic interaction with an adspecies.

In the next section, we calculate the electronic density

profile of a model one-dimensional semiconductor, after which

the effect of surface state excitation on this curve is examined.

The changes in the interaction potential of a charged adspecies

with the surface in various excited states is then calculated-

and compared. Finally, limitations and possible extensions of

our model and its application to laser-induced surface processes

are discussed.

2. Ele-tronic Density Profile

In our model, we have a one-dimensional linear chain of atoms

of length L and with lattice constant a, which is confined along the

z-axis to the region z < a/2. Such a model has been shown to produce

valence, conduction and surface bands. 7'8 In the ground state, the

valence band is completely occupied while the surface and conduction

bands are empty.

To obtain the total electron density, n(z), we must sum the

individual densities of all occupied states:

n(z) = 8L fd3kIlk(z) 12  (1)
(21) 3

where the wave function, *k(Z), with crystal momentum k was pre-

7,8viously determined. If we now use cylindrical coordinates, this

can be readily reduced to
2L kF (2

nC 7 f dkEF-E(k)]I*k(z) (2

it 0

where E F is the Fermi energy of crystal momentum kF.
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Because of its importance as a semiconductor, we have used

parameters9 , 0 typical of silicon to numerically evaluate the

density profile, and our results are shown by the solid line in

Figure 1. The oscillations of the charge as one goes into the

bulk of the crystal and the exponential tail are typical of such

density profiles. These results are for the ground electronic

state. The effect on this profile of promoting electronic charge

by lasex action into the surface states is considered below.

3. Charge Density of the Excited System

If the system is now exposed to a laser with an energy of

about half the band gap, it is possible to populate surface states
8

of our crystal. The wave function of these surface states is of

the form
ra

for z< and a

*K = Cssin e K e (3b)

for z> S, with the energy given by
2' IT 2

where the normalization constant, C5, the exponential factor, q,

and the phase factor, 8K , have previously been determined.
7'8 The

parameter K in the above expressions is the imaginary part of the

crystal momentum that occurs in surface states. V, the g component

of the Fourier transform of the effective potential where g- 2w/a

is the reciprocal lattice constant, is assumed to be positive.

Using Equation (1) we find the new charge density to be
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i nlz) nlz) - 14; L 2 [Kz) 2  (5)

where n0 (z) refers to the charge density of the unexcited system

given by Equation (2) and the transition proceeds from bulk state

k to surface state K. As previously pointed out,8 the excitation

conserves the crystal momentum. Therefore, bulk states are excited

at the band edge with k= 2:

2 sina(z-S)+6 1. (6)

2 L

However, since the charge associated with this state goes as 1/L,

for a very large system we would in effect be taking only an in-

finitesimal amount of charge from everywhere in the semiconductor

to populate the surface state. Consequently,. for a large system,

the new charge density can be written

n(z) - n0 (z) + I 2. (7)

Using Equation (3) in Equation (7) along with the results for the

ground state, we have obtained the density of the semiconductor

with the K - - . 5 (2V/g) lower branch surface state exqited. The

results are depicted in Figure 1 by the dashed line. As can be

seen by the plot, this excited state produces an electronic charge

in the surface region that is twice as great as the bulk average.

If the surface states are excited closer to the branch point near

the gap center,Ic-2V/g, the charge concentration in the first

few layers of the surface will increase up to about thrice the

average density. The interaction of an adspecies with this charged

surface will now be examined.
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4. Adspecies-Surface Interaction

If there is a charged adspecies above our surface, the clas-

sical interaction between this ion and our semiconductor can be

written as

U(zi) - -fn(z) v(r)dr (8)

with

r- [x 2+y 2 +(z - ZI) 2 11/2, It19)

where v(r) is the electron-ion potential of the adspecies at zI.

Let us assume that v(r) is Coulombic in nature with Thomas-Fermi
11

screening:
Ze-X r

v(r) Zr (10)r

where X is the screening paramdter,

X =~ (11)

and Z is the charge or the adspecies. A more appropriate screening

may well be similar to those developed for finite metals, but

such a calculation is beyond the scope of this paper. Since the

Thomas-Fermi screening parameter depends on the .average electron

density, n, we would expect this parameter to be less in the sur-

face region. Consequently, the use of a screening parameter based

on the bulk density would underestimate the actual interaction.

Bearing this limitation in mind, Equations (8) and (10) can

be combined and readily simplified to give the interaction

U(z 1 ) - f n(z)e 'l dz. (12)
-cc

Inserting Equation (7) into this expression, we obtain
-- 2wrz " -Alz-z1

u(z 1 ) =-1 J n (z) e - S U(z )dz, (13)

. .... . .. 01 I i I I I " a ' . . .. . . . . . . . . . m . . . . . l ". . . . . , q I I I - 1
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where the change in potential induced by the excited surface states

is given by 2e- Iz -Z z I]
SUc - A I( e dz. (14)

Inserting the expression for the surface wave function, we get
2 I a2 a -2K ( z-) - L zI Z-I

SU(z I) U sin /2i2[2(Z- )+]e dz

+ sin2 o e- 7)dz). (15)

After much algebra, these integrals yiold an interaction potential

of the form

SU ( zI) -AzI  -2qz I
e- A(K) - e B(K), (16)

where

C w sin2e 1 (2 K-A)cos 26 -gsin 2e
'A W (q-) 2K-A + (2#)2+g2 e (17)S( - (2 -A e .

and
S4 irsin2e K qa

B(,c - 2 e (18)

(2q)_X
Equation (16) haks been evaluated for a number of surface

states, and the results are plotted in Figure 2. The curves clearly

show that as one moves to larger JK- (energies near the gap center),

both the intensity and the range of the surface charge interaction

increase, as would be expected from the density calculation. All

curves, however, show an appreciable contribution to the potential

produced by the surface states with lee > 0.1(2V/g).

A better comparison of the surface charge interaction among

the various surface states is given in Figure 3, where we have

plotted the change in potential at zI a for all the surface states.
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The upper branch states are at a higher energy (positive sign in

Equation (4)] than the lower branch states. Therefore, the expo-

nential tail and, subsequently, the interaction is slightly greater.

5. Discussion

Use of a laser to localize electronic charge in the surface

region of a semiconductor can produce an appreciable effect on an

adspecies-surface interaction. If the adspecies is negatively

charged, desorption can be induced; if positively charged, the pos-

sibility of adsorption is enhanced. In a more realistic model with

both occupied and empty surface states, the laser excitation of

holes as well as electrons could be used to selectively enhance

adsorption or desorption for the same charged species.

Since the concentration of charge is so great in the surface

region, as shown in Figure 1, one would expect the effective inter-

action length to be greater than that indicated by Figure 2. The

exponential decay of our potential is probably an artifact of the

assumed Thomas-Fermi screening. An improved interaction potential

would necessitate addressing the dielectric screening problem in p
more detail.12

Another consideration is the fact that we did not look at the

equilibrium concentration of the surface state - only one surface

state was assumed to be populated. On the other hand, several par-

tially occupied surface states may well have as much as or more

surface charge than a single occupied surface state.

Of course, the major limitation of our model is its one-

dimensionality. The three-dimensional interaction potential may

be quite complex depending not only on the distance from the surface
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but also on the position of the adspecies with respect to the plane

of the surface. Also, many of the features of a crystal cannot be

adequately treated in a one-dimensional model.

Nonetheless, our contention that lasers used to control sur-

face charge density can lead to enhanced surface processes has been

substantiated. The effects on this process of higher dimensions,

phonons, and the dynamics of the adspecies and surface are the sub-
ject of continuing research.
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Figure 1. Electron density distribution at the surface. The solid

line represents the ground electronic state, and the dashed line

represents the system with the excited surface state K - -.5 (2V/g)

in the lower branch.

Figure 2. The magnitude of the surface interaction potential (in

millihartrees) at various distances from the surface. The solid

line represents the system with excited state K - -(2V/g); the

dashed line, K - -.5(2V/g); and the dotted line, K - -.l(2V/g),

all in the lower energy branch.

Figure 3. The magnitude of the surface interaction potential (in

millihartrees) at a distance zI - a for the system with various

excited surface states. The solid line represents surface states

in the lower energy branch; the dashed line, the upper energy branch.
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